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Resonant Scatteringy of Elastic Waves

from Spherical Scolid Inclusions

Lawrence Flax

Naval Research Laboratory, Washington, DC 20375 f
and

Herbert Uberall*

Physics Department, Catholic University of America, Washington, DC 20064

Adbstract

Previous investigations concerning the scattering of elastic

waves from solid spherical inclusions have furnished expressions

S
by

for the scattering cross sections which, upon numerical evaluation,
exhibited resonance-like features as a function of frequency. 1In
4 the present work, we study these resonances in a fashion suggested
: by the resonance theory of acoustic scattering due to Flax,
’Dragonette and aberall [J. Acoust. Soc. Am. 63, 723 (1978) ]. The
'resonances of the solid inclusions, exemplified by iron or lucite

I spheres imbedded in an aluminum matrix, are found numerically in
the individual normal-mode scattering amplitudes, and are ‘

interpreted in terms of phase-matched circumferential waves.
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A
Dispersion curves for the phase velocities of the latter are
obtained, exhibiting two families of waves of different type.
Finally, the connection of these waves with the Stonely waves
on the boundary between two flat half-spaces is noted in the

high~frequency limit.

INTRODUCTION

The scattering of plane compressional (P) or shear (S)
waves by cavities or inclusions in an unbounded elastic solid

medium has been investigated by a number of authorst~13,

For
example, the scattering from cylindrical obstacles has been
studied for the case of empty 1 or fluid-filled?™4 cavities,
for both incident P and S waves. Scattering from ellipsoidal
solid inclusions has been analyzed for P and S waves® ., Spheri-
cal obstacles have been the object of numerous investigations:
e.g., for empty spherical cavities, the scattering of P waves
has been dealt with for the steady-state5 and the transient

case’. Scattering from fluid-filled spherical cavities was

8-10 11,12

considered for incident P waves as well as S waves

An extensive review of the literature on elastic-wave scattering

from cavities and inclusions is given in Reference 10. I
For the case of scattering from solid elastic spherical

inclusions, the literature contains numerical studies of

scattering cross sections for incident P wavesl3 and s wavesl4,

I, atdy W
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based on the corresponding preceding theoretical workls’ll.

When plotting the cross sections against a dimensionless
frequency variable, the authors of these studies noticed in
many cases a "peaking and fluctuating"” or "oscillatory

behavior" of the plots, "suggesting that some type of resonance

process is in effect". No detailed analysis of the resonance

phenomena had been attempted at that time, however.

The present work devotes itself to such an analysis, using
the recent theory of acoustic resonance scattering due to Fiax,
Dragonette and Uberalll®, mmis analysis is carried out for the
case of plane compressional waves incident on spherical elaétic
{ inclusions imbedded in an unbounded elastic solid medium.

(Note that a resonance study of scattering haé been performed

for cylindrica13'4 and spherical fluid-filled cavitiesg'10'12'17).

A similar analysis is now being carried out by us for shear

; ! - waves incident on spherical elastic inclusions. Our resonance
theory separates the individual ("partial wave") mode contri-

butions into a non-resonant ‘eometrical” background term, and

into a resonant term due to the vibrations of the inclusion.

- Y
i

The resonant term is small off resonance, but is significant

and interferes with the background at and near the resonance.
The position in frequency of the resonances can be determined
by solving a corresponding eigenvalue equation, which for the

case of non-absorbing media is a real equation with real

solutions.
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We analyze numerically the cases where the scatterer is (a)

a lucite sphere, and (b) an iron sphere, both imbedded in an
aluminum matrix. These materials were chosen in order to

provide a contrast in the corresponding background terms

[?pproximately given by that of (a) an empty cavity, or (b) a
rigid inclusioﬁ]. The resonances are obtained numerically,
and are interpreted in terms of phase-matched circumferential
waves. Dispersion curves for the latter are obtained,
exhibiting two families of waves of different type. The
connection of these surface waves with the Stoneley waves on
the boundary between two flat half<spaces is noted in the

high~-frequency limit.

I. THEORY

£ The center of an elastic sphere of radius a is taken as

F the origin of a spherical coordinate system (r,19,§f7. The
longitudinal and shear speéds, and the density, are designated
by ¢, cg and ¢ . respectively, for the eiastic matrix in
which the obstacle is imbedded, and by vy Vs and ‘Pq:for the

spherical obstacle itself.

. * L . . .
The displacement vector u in either elastic material can

—5
be expressed in terms of two disgacement potentials_z; and V¥,

|

- -
u=-V0 +Vx V¥ | (1)

i
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where ﬂf is the scalar potential and 4 the vector potential.

Each potential satisfies a scalar wave equation. For the incident
wave, we take as its solution a plane harmonic longitudinal wave
propagating in the direction of the z - axis, with wave number
kL and circular frequency &. This wave is given by

_6_54-_= expi(wt - kyz) which can be expanded in spherical

coordinates as

00
@;- = Z(Zn +1) (-i)njn(kLr)Pn(cos-ﬁ). - (2)
m=9

As a result of the scattering and mode conversion processes,

there are both longitudinal and shear-type scattered waves, i.e.

[l

&, =Z (2n + 1) (=)® 3,82 (kpr) p (cosh) (3a)

Nn=0
(longitudinal), and

oo -
YS = Z (2n + 1) (=) A ) (k_r)p L (cosd) » (3b)
m=o9

(shear), where by ¥ s We designate the qpé-component of

-

‘H!s which is the only nonvanishing one. The wave numbers are
here kL =0/cy, and kg =W/cg; hn‘z) = jh—-i,ynare Hankel |
functions of the second kind, and Pn. Pn1 are the ordinary

and associated Legendre polynomials. The undetermined coefficients

Ap 2and By have to be determined from the boundary conditions at

Ir = a.
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Inside the scatterer, the refracted waves (labeled by a

subscript q) are represented by

o0
@1 = ) (en + 1% 4 e (cosd) (42)
m=0
and
(=]
Yé} = Z (2n + 1) (-i)nDn?.n(qs‘r')Pnl (cos&), (4b)
m=0

where the wave numbers are q; = (A)/VL and qg =w/vs.

There are four separate boundary conditions that must be
satisfied by the solution to this problem. These conditions
are prescribed at the interface r = a between the sphere and the
matrix; they are: continuity of (i) normal (radial) and (ii)
tangential displacements, and continuity of (iii) normal and
(iv) tangential stresses. These are sufficient to specify the
four sets of unknown coefficients Ap, B,, C, and D,. Details
of setting up these boundary conditions are given in the
literaturel8 and we shall here simply state the results.

The coefficients of the scattered waves are given as the

quotients of two fourth-order determinants of the form

211 335 214 235
1 ag] a2 a4 azs
ZX 231 232 334 233

241 242 244 245

(5a)




N e L

and
fyy 39
L 1 az] az2
n _ék 431 232
841 242

where the denominator is
ajl1 ai2

Zﬁk < 291 %32

a1 233

%41 942

ai3

a23

243

(5b)

(5¢)

44

The twenty different elements contained therein are found to be

54

L uh !
e g g, Lie @)+ 25, 40 )]

2 =

213 i'*?-? [*Kf’(%

% __.21 _sz_ 4m(7u*1J [;GQ

- jm @5)]

) - 28457 (2)] o

ne =228 [ Z 4 @ (2) - .1 (2)
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" 1+2§*[7% 2) - 2540 %Y

(from the continuity of normal stresses 'l;r),
Y

Ayy = QL. I~ (QL.)

21 =- %(%-\-i‘ﬂq\ (QS\)

e e e

n

Agy = mn+d) £, (Zy) _ "

|

e~ zL.. 2:\x’ (Z‘l_)

gecom 150 sl D Bt i el
s = 27[Q f (@)= ()]

=9 [@;y'u"/QS) + (e a)m-i)g‘n (oF )]
ay = Z[ 2,457 2] < i R

Azy = Zgz 'K'f)”('zsf) + (n+2) ('n-i)'g«.m (Zg)




g
[ ) | A5 = 2[2,_2'.,( (ZL) 2 3“ (%, ):{

(from the continuity of tangential stresses td&)'

7 i a"‘ (Q‘—)

and

Ay = Qs g (Q) + Fn (Qg)
Ay = ’Z‘“m('zt.)

Ay = zy /g%(zu (;.zg)'*‘ me (z’s')

/aq;‘ e f“ (ZS)

(from the continuity of tangential displacements u.“*) s

Here, ZL = kLa'ZS'= kLa, QL= "ZL"’"/ S': ’iS" ,a_}

E‘:-’-A//\ ) §,1=}17/ /Ai ) '?= [-441’ /I—*— 'whereA.”u. are

the Lame/constants of the matrix and /\‘Z ,;.L$ those of the

sphere, so that

(6d@) - -
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< - [Berpmsp T
vy (7a)
/1:§ - (/“‘4/§>) *

V= [ 20, 0k, |
= e Sl

(7b)

This determines the coefficients of the scaitered wave in terms
of the incident amplitude.

The quantity of physical interest is here the differential
scattering cross section as obtained, €.g., by Ying and Truellis.
The tirﬂe rate at which energy is carried away by the

scattered wave across a sphere of radius R~ OO is

(e f (T Uy + g o T a JR™afL ()

with real displacements uj; and stresses 'C;-I- . With complex

fields, and going over to spherical components, this gives

X
Re (T, u + T,y uy YR I (8b)

1‘

&
n
NEEN

since there is no q9- dependence present: Using the well-known
expressions for displacements and stresses in terms of the

5_5
potentialsyand yf’, e.g. Eg. (1), and inserting the far-field

expressions of Egs. (3a) and (3b), we find

R L

ak;ﬂ‘x'.- 5




e

T

o2 2 > 78
dF = §d per {IL 2o |+ 34 ol

where

: - ) =4/
o~ f.,?Pf'&) = (Lw+r4) }L AM_—.E.“ (cosd)

-i/2
atr PI9) = (2mrt) 2y B, B (s $),

The total cross section 6 is obtained as the integrated

flux F, normalized to the flux (i/Z)Q wsz of the incident

wave, so that
z§

é=4i(2%¥i)[ I fn(qui) B

7

Z

Note that for backscattering (-9=1z) there is no contribution

to the scattering amplitude from the outgoing shear waves

f:s () since Pnl (-1) = 0.

-11 -1

(9b)

(9¢)

(10)




II. RESONANCE THEORY

The resonance theory of acoustic and elastic wave scattering
has been described in detail in references 16 and 9,
respectively, and shall only be sketched in the present context.
Using the asymptotic forms of the Hankel functions, one obtains

the far-field expressions of Egqs. (3) as

PP

By ~ (ifr)(ka) @7 hret) Franend,

b AR T e s T e i
"

together with Egs. (9b,c). Two S-matrix elements are

introduced by

S%?‘Pz 4_ 1 2AW
S|%‘PS L ZB,“_

and we find

a A
11 4111 'O&$ 431»

A
Qas Gy Oy Oyy

A
R
9

n

1
=

A
Ay Oy Oz Qg

N
AAyy  Qqz - Dyy Fyy

il o el i i el Dot b R " iz i

. b . < ' “
-12 -

(11a)

(11b)

(12a)

(12b)

(13)

L




a L : (2) (1)
where ‘a*. 3 equals o <3 but with hn replaced by h, =
It is advantageous to consider the limit of scattering
from a "soft" (i.e. evacuated) spherical cavity. This is ‘

obtained by f)q‘—) 0 while vy, and Vg remain constant, so that

|
1
!
{
{
F
?
!
i
|

< q Femains finite and 9> (. (The "rigid" limit would be

obtained by ?‘1-300 |

The corresponding "soft" S matrix element is thus

A
g (syPP Qy Ay Oy Ay

n - A (14)
' Ayy AAyy Dyy O34

In the resonance theoryg'ls, this expression is factored out of

snPP and we can write

A A A
Sl PP 54 ()PP Gn (s)PP Re 6,‘-#1 I G
" v e (15a)

SRR e iR

with

ad
2
]
G

~

»

L

r’

A
Q a

23 Moy / 13 Yy (15b)
P
Mgy Mgyl
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and G, a similar expression without carets. The resonances in
the scattering amplitude originate from the condition (repre-

senting a real eigenvalue equation):

Re Gn(zL)= o, b (16)

which determines the eigenfrequencies Z21= anr labeled by

r=1,2,3... . A linear expansion of G about Z;" then brings

snPP into an explicit resonance form:

PP sy PP agad = 5
S S* Z Z“, P, l_ /Z ) (17a)

with a resonance width
Faw ® 23w G (%" )/Re G/ ("), om

and with

fi.n,. - é\n/pe G.. -(ZL“?)‘- ; _ . Q70) -

If Eq. (14) is written as

QmiP 28"
. e

= (18a)
with E:’ complex, then the quantity
Ap = 2_ (s PP _ 1) (18b)
:
R




? which determines the scattered amplitude of Eg. (3a), becomes

.%o (% o (s)
AOMEYDEE -t ‘D: =

% - ?M“‘ ; ) |-
<+ 24 e St Tan ) (19a)

where

Muo = (G- 6)/Re G/ (Z).  am

Ny

This shows that the scattering amplitude consists of a
non-resonant background term [the second term in brackets in

Eq. (19a)] which is due to the scattering of P waves from a

soft sphere, with a series of superimposed resonances (first

term in brackets) which will interfere with the background

ﬂj ‘ amplitude. A corresponding expression may be derived for Bp

of Egs. (3b) and (l2a), i.e. the mode-converted scattering

amplitude:




(19c)

Note that the resonance frequencies are here the same as in
BEg. (19a) since the resonances are due to the vibrations of the
same inclusion in both cases, independent of the resonance -

mechanism.

The expressions of Eqs. (19a), (19¢) hold in the framework
of the resonance approximation, valid if the width of the
resonances is samll compared to their spacing. However, the
actual numerical calculations to be discussed below have all

been carried out using the exact expressions Egs. (5).

III. NUMERICAL RESULTS

Scattering amplitudes have be evaluated numerically for the
cases of (a) a lucite sphere, and (b) an iron sphere, both
imbedded in an aluminum matrix. The material parameters of
?hese substances (assumed non-absorptive) are listed in Table I.

In Fig. la, we plot for case (a), lucite in aluﬁinum, the

amplitude moduli gf"lf:?l/Pﬂ (cos¥)of Bq. (%) vs k as= 2
) B

of aluminum, for the partial . waves n = 0, 1 and 2. Similarly,
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Fig. lb shows the quantity a=1/2 I{BPS' /Pnl(cos&)of

BEg. (9¢), i.e. the mode-converted scattering amplitude. In
both cases, the interference pattern of the resonancesof

the lucite sphere with a non-resonant background is clearly
visible. Due to the much smaller impedancesof the lucite
sphere (QEQL, ﬁz'ug ) as compared to those of the aluminum
matrix (Q’CL ’ ?ftg ), it is expected that the background :
resembles closely that of scattering from an empty cavity in
alumingm. We therefore plot in Figs. 2a and 2b the quantities
a-tll lf-:v- ﬂm?? '/:E“ | and —a"”' ’f,‘?’“ J”"l/l’,f‘,
respectively, where the "soft" background amplitudes

fm‘s, r: or :FJ!)?S ., obtained from Egs. (9b), (9¢) in the
limit gzg-é 0, were subtracted out from the total partial-wave
amplitudes. 1Indeed, the pure resonances of the cavity contents
appear to have been made visible in this way. The resonance
frequencies are the same in both cases, but it is seen that
two families of resonances are present, and only one of these
is being excited in P = P scattering while both families are

excited in P-» S scattering.

Similar numerical resulits are shown for case (b), iron in

aluminum, where the n O, 1 and 2 partial wave scattering
amplitude moduli are shown for P - P scattering in Fig. 3a, and

for P S scattering in Fig. 3b. Due to the density of the




inclusion being larger than- that of the matrix, the background

is now expected to correspond to scattering from a rigid sphere
(¢ /P“l — 0). In factif this background is bubtracted from

:gnP‘P or’ #RS‘ and the modulus is taken subsequently, Figs. 4a

(P > P scattering) and 4b (P-» S scattering) indicate that the
pare resonance amplitudes are indeed obtainea in this way.
(The resonance formulation with a rigid background is similar to
that for the soft background given in Section 1I, see, e.g.
references 9 and 16).
From Figs. 2 and 4, the resonance frequencies for cases (a)
and (b) may be read off and tabulated. They may serve to
obtain the dispersion curves of circumferential waves propagating
over the surface of the inclusion, which have been shown to be
generated during the scattering process, and to provide an
interpretation for the existence of the resonances10/19,
The resonance frequencies EELnr in the resonance expression
for the S - matrix, Bg. (17a), are functions of the mode pumber
n which we now consider a continuous Qariable. Wé may expand

ny :
ZL in the n- variable about the value n = np, chosen so that

*er" = Z'_ (the incident frequency) :

2= Z T+ (n-n,)(dz:’/dn)nm*. (20)

L D R S,

bl
M“* s it S PR e v

el
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Inserting into Eq. (17a) brings the latter into the form

S PP S ) PP f /v?-uuh
i = » - (21a)

o~
v N =il /2-

where

,:'nv = /(d-zzw/d“).,‘,w 1 o (21b)

and where the width in the n - domain is

neEn,

Fﬁw- r‘nr / (dzzw /d"') 5 e

Eq. (2la) is an expression which has "Regge" poles in the

complex n - plane, located at

A

fﬁr —) ’n"‘ + 4: r,,w. /2. . (Zld)

They may be utilized for an evaluation of the scattering
amplitude, Eg. (3a), in terms of the Watson transformationl©.19
with the result that the outgoing portion of the total P-> P

scattering amplitude has the asymptotic forml®




0o o0

12
§" 2T Z_—_ Z E £ ) (Q'Y?y’i) F,M_

24 mzo £=% T{":r* .:i)g,\,&.

x exp i[Z fﬁf) — TR, [2 + Qmrd)ren, + E@RAL ) () -ET/4] 22,

This describes a manifold (labeled by r) of attenuated f
circumferential "tidal" waves which engulf fhe spherical
inclusion along all meridiens (m = o), with additional components
(m >0 )that have previously circumnavigated the inclusion m’

times. The phase velocity of the rth surface wave is given by

et 2

- w—
SRR

., (%L\ = (23}

1
m, + £

When the Regge pole of Eg. (21d), which with varyincj ﬁ;equency

moves through the complex n - plane along a "Regge trajectory",

passes by the integer n so that n,->» n, the wavelength of a

surface wave,

A?(ZL) = ZTFOL/(’Y\Y*%: )r s . (24)

becomes Zwa/(n+§) so that n + %‘_‘ wavelengths span the

circumference of the spherical inclusion. Since as seen from
Eq.(22), the circuniferential wave suffers a phase loss of /2

(i.e., a guarter wavelength) every time it passes through one of

the convergence points-\9'= 0,7 at the north and south pole of the

spherical inclusion, this condition leads to a perfect phase i

et ———
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match of the wave after each circumnavigationl The poles in the
scattering amplitude, Egs. (17a) or (2la), therefore describe a
i "resonant buildup" of the amplitude of the circumferential wave
i in the course of its repeated circumnavigations due to phase

matching, which becomes physically manifest at the integer mode

amplitudes, leading to the resonances shwon, e.g., in Figs.2 or 4.

The families of resonances which in these figures are manifest
'in all partial-wave amplitudes and which recur at successively

higher freguencies in successive partial waves, each thus

correspond to, and represent, one single circumferential wave.
In a sense, this physical picture (which applies generally to u

any type of smooth spherical scatterer), explains the

existence of the scatterer's resonances in terms of a phase
matching of the circumferential waves which its surface may
support.

Using the resonance frequencies which appear in Figs. 2 and 4,
(as well as in corresponding graphs for higher partial

waves), we may obtain dispersion curves of the surface waves

from Eq. (23). These are shown in Fig. 5 (for lucite in aluminum)
and Fig. 6 (for iron in aluminum), where the quantity cr/cL is
plotted vs. Zj fog all the surface waves labeled by r. From
these dispersion curves, we see that the surface waves on an
elastic spherical inclusion imbedded in an elastic medium fall

into two classes (represented in Figs. 5 and 6 by solid and




dashed curves, respectively), which presumably correspond to

longitudinal and shear type surface waves. The distinction
between these two classes of curves, when producing the plots,
has been greatly facilitated by the fact that in P> P
scattering (Figs. 2a and 4a) only one clz ; of surface waves
seems to have been excited, while in P->» S scattering
(Figs. 2b and 4b), both are excited. For small values of Z,,
however, the distinction in the excitation mechanism, and hénce
in the dispersion curves, is no longer so clear-cut.

At the end, we would like to comment on the high-frequency

(or large-a) limit of the dispersion curves, Z2;,>% . In this

f limit, the dispersion curves approach horizontal asymptotic
values, while physically, the boundary of the inclﬁsion tends

{ towards the flat boundary between two infinite elastic half-spaces.
In that latter case, the speed of surface waves on the boundary,

c, satisfies the Stoneley equationZ®

et [lo=py) s (o My +pa Mg Ny 7R, N)]

gt (QMiNz—S:q_MN ‘-S°+Pﬁ) (25:
&8 R EMIN 4 J W e TS




P Z Z

: -
?
where
b - ('1_-'C7-//C,_’-)l’2- \
My= (L=t [
= (i-cz/cs‘-)‘“‘ B (25b)

1_) L2

il

(L - <> /vs

n

2 ( G’IC@?I o 531,1{32')-

We have solved this equation numerically, and have found a
Stoneley root c/cL = 0.504 for the case of iron in aluminum;

no root was found for the case of lucite in aluminum. (It is

well-known?0 that Stoneley wave solutions do not always exist

on the flat boundary between two elastic half-spaces).

In Fig. 5, we have entered two arrows on the right-hand side
representing the values VL/CL = 0.4080 and vS/cL = 0.2010.
While many of the dispersion curves on this graph fall below

vL/c for large enough ZL, the value vs/cL is found to represent

L
a comfortable lower limit for even the lowest dispersion curve, |
up to the largest Z;- value (Z2p, = 25) at which that dispersion

curve was obtained; but this value was not yet large enough to

decide whether VS/CL actually constitutes an asymptote for the

dispersion curves.
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In Fig. 6, we have cntered three arrows representing the

values (from top) vy/cy = 0.88l5, c/cp = 0.504 (the Stoneley

wave solution), and vg/cr= 0.4720. While either of the two 1
latter values seems to represent an asymptote to the dispersion g
curves on this figure, a plot of the lowest dispersion curve

up to Z; = 35 reveals that at 2; = 24, this curve falls below

the value of c/cp , but that the value of vg/cy, represents a

likely asymptote for the lowest dispersion curve. Since in

this case of iron in aluminum, the higher dispersion curves lie
considerably above the lowest one, no statements could be made

about their asymptotics, except that several of them definitely

fall below the value of VL/cLas Z;, increases.

IV. CONCLUSION

This work represents the first systematic study of resonance
effects in the scattering of elastic (P) waves from solid
spherical inclusions. The resonance approach is patterned aftér
our previous resonance studies in acoustic scatteringle, and in
elastic-wave scattering from fluid-filled cavities?+10, Both in
that latter case, and in the present case, the resonames are
! caused by the vibration of the substance filling the cavity, and

they can be shown to originate from the phase-matching, or

R . ]




Il " . . - 25 -

j resonant reinforcement, of repeatedly circumnévigating surface
waves. But while in the case of a fluid-filled cavity only

one type of surface wave has been foundg'lo, the present case
of a solid inclusion is endowed with two different classes of
surface waves, as evident from their dispersion curves which
were obtained here. It is interesting to n§te tha£ P->P

i scattering (without mode conversion) only sets up one of these
two classes of surface waves, while P - S scattering (with -
mode conversion) excites both classes. The asymptotic behavior
for high frequencies of the dispersion curves has been compared

with the Stoneley wave limits for two half-spaces in contact,

and it was found, at least for the case of an iron inclusion in
aluminum, that the Stoneley wave speed does not représent an
asymptote of the lowést dispersion curve while the shear speed
of iron probably does. In the lucite-aluminum case, again the
shear speed of Lucite probably represents the asymptote of some

of the dispersion curves.
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TABLE I

Material Parameters Used

density Longitudinal speal Shear speed
Material xlO"3kg[m3 : x 10"3m/sec X 10"3m/sec
3 Aluminum 2.7 6.568 3.149
b 5
Iron 1.7 : 5.79 3.10
Lucite 1.182 ot 2.68 ‘ 1.38
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FIGURE CAPTIONS

Fig. 1.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

2 PP,
Plot of (a)a /2 'fu I/.Pn_ (c038) , and (b)
& Ps
L /BE (cos) vs.E for the
partial waves n = o, 1, and 2, case of a Lucite

sphere in aluminum.

Plot of (a) o~ 'f‘“’??_ ‘:”P? l /_'E“ (cos &)

and (&) o HE|PRS _ P OFS | P Meosd) v P

oy 2 . ; i
(where #L_) is the empty-cavity scattering amplitude)
for the partial waves n = o, 1, and 2, case of a

lucite sphere in aluminum.
= TP
Plot of (a) A o ’f‘n ‘ /P“ (COS“&),

ana (b) .2 £ 7] /B (cosd) s E

for the partial waves n = o, 1, and 2, case of an iron

sphere in aluminum.
- (v)PP
Plot of (a) o /% Ifn‘PP— nr l /_’_R_s (cos B)

and (b) .o */* ’1\?5‘ e :F,\(ﬂ b ‘ /:E‘:' (cos )

)

o i® the rigid-inclusion scattering

vs. Z, (where
amplitude) for the partial waves n = 0, 1, and 2, case
of an iron sphere in aluminum

Dispersion curves for the two families of surface waves

on a lucite sphere in aluminum. Arrows on the right

represent the values vp/cp= 0.4080 and vg/cp = 0.2010.

Dispersion curves for the two families of surface
waves on an iron sphere in aluminém. Arrows on the
right represent the values vi/cy, = 0.8815, c/cy= 0.504

(the Stoneley wave spged), and vg/cy, = 0.4720
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